MIAMI-DADE WATER & SEWER DEPARTMENT													
2020 WATER QUALITY DATA													
PARAMETER		FEDERAL GOAL (b)		YEAR TESTED	MAIN SYSTEM	MCL VIOL Y/N	SOUTH DADE WATER SUPPLY SYSTEM	MCL VIOL Y/N	NMB WATER	MCL VIOL Y/N	REDAVO	MCL VIOL Y/N	MAJOR SOURCES
MICROBIOLOGICAL CONTAMINANTS													
Total Coliform Bacteria (C)	Π	0	Π	20 (h)	0	NO	0	NO	0	NO	0	NO	Naturally present in the environment
DISINFECTION BYPRODUCTS Total Trihalomethanes (ppb) (d)(e) Haloacetic Acids (ppb) (d)(e)	80 60	N/A N/A	80 60	20 (h) 20 (h)	74 (13-84) 22 (3-20)	NO NO	62 (7-71) 41 (15-42)	NO NO	19 (5- 16) 13 (7-15)	NO NO	56 (46-67) 16 (14-18)	NO NO	Byproduct of drinking water chlorination Byproduct of drinking water chlorination Byproduct of drinking water chlorination Byproduct of drinking water chlorination
DISINFECTANTS Chloramines (ppm) (f) Chlorine (ppm) (f)		MRDLG=4 MRDLG=4		20 (h) 20 (h)	2.5 (0.1-5.0) N/A	NO N/A	N/A 1.5 (ND-2.6)	N/A NO	3.4 (0.6-4.0) N/A	NO N/A	N/A 1.0 (0.3-1.6)	N/A NO	Water additive used to control microbes Water additive used to control microbes
INORGANIC CONTAMINANTS Antimony (ppb) Arsenic (ppb)	6 10	6 0	6 10	20 (h) 20 (h)	0.1 (0.1)	NO NO	0.5 (0.1-0.5)	NO	ND 0.4 (0.4)	NO	ND 0.6 (0.4-0.6)	NO	Discharge from fire retardants, electronics, solder Erosion of natural deposits
Arsenic (ppb) Barium (ppm) Chromium (ppb)	2 100	2 100	2 100	20 (h) 20 (h) 20 (h)	0.006 (0.004-0.006) 0.3 (0.1-0.3)	NO NO NO	0.02 (0.01-0.02) 0.5 (0.2-0.5)	NO NO NO	0.003 (0.003) ND	NO NO NO	0.013 (0.013-0.013) ND	NO NO NO	Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits
Copper (ppm) (g) (at tap) Fluoride (ppm) (i)	AL = 1.3 4	1.3 4	AL = 1.3 4	20 (h) 20 (h)	0.06, 0 homes out of 101 (0%) exceeded AL 0.8 (0.6-0.8)	NO NO	1.1, 3 homes out of 41 (7%) exceeded AL 0.1 (0.1)	NO NO	0.06, 0 home out 55 exceeded AL 0.9 (0.2-0.9)	NO NO	1.2, 5 homes out of 47 (10%) exceeded AL 0.8 (0.5-0.8)	NO*	Corrosion of household plumbing systems Erosion of natural deposits; water additive which promotes strong teeth
Lead (ppb) (g) (at tap)	AL = 15	0	AL = 15	20 (h)	3.6, 1 home out of 101 (1%) exceeded AL	NO	2.2, 1 home out of 41 (2%) exceeded AL	NO	2.1, 1 home out of 55 (1.8 %) exceeded AL	NO	0.8, 0 homes out of 47 (0%) exceeded AL	NO	Corrosion of household plumbing systems
Nitrate (as N) (ppm) Nitrite (as N) (ppm) Selenium (ppb)	10 1 50	10 1 50	10 1 50	20 (h) 20 (h) 20 (h)	0.5 (0.01-0.5) 0.06 (0.01-0.06) 0.95 (ND-0.95)	NO NO NO	7.1 (1.2-7.1)** ND ND	NO NO NO	ND ND ND	NO NO NO	2.05 (2.05) ND ND	NO NO NO	Erosion of natural deposits; Runoff from fertilizer use Erosion of natural deposits; Runoff from fertilizer use Erosion of natural deposits
Sodium (ppm) Manganese (ppm) <u>SYNTHETIC ORGANIC CONTAMINANTS</u> Oxamyl (Vydate) (ppb)	NE 50 200	N/A 50 200	160 50 200	20 (h) 20 (h) 20 (h)	41 (24-41) 10 (0.5-10) ND	NO NO NO	24 (19-24) 2.5 (ND-2.5) 1.1 (1.1)	NO NO NO	33 ND ND	NO NO NO	28 (26-28) 0.001 (ND-0.001) ND	NO NO NO	Erosion of natural deposits and sea water Erosion of natural deposits
RADIOACTIVE CONTAMINANTS Alpha Emitters (pCi/L)	15	0	15	20 (h)	ND	NO	7 (ND-7)	NO	ND	NO	ND	NO	Erosion of natural deposits Erosion of natural deposits
Combined Radium (pCi/L) Uranium (µg/L) Radon (pCi/L)	5 30 NE	0 0 NE	5 30 NE	20 (h) 20 (h) 20 (h)	0.4 (ND-0.4) 1.0 (ND-1.0) 193 (ND-193)	NO NO	1.0 (ND-1.9) 10 (0.8-10) 178 (ND-178)	NO NO	ND ND 8 (3-8)	NO NO	1.4 (1.1-1.4) 1.8(1.0-1.8) N/A	NO NO	Erosion of natural deposits
ABBREVIATIONS & NOTES AL = Action Level MRDL = Maximum Residual Disinfectant MRDLG = Maximum Residual Disinfectant N/A = Not Applicable ND = Not Detected NE = None Established pCi/L = picoCuries per Liter POE = Point of Entry to the Distribution S ppb = parts per billion or micrograms per ppm = parts per million or milligrams per () = Ranges (low - high) are given in The value preceding the parentheses is 1 monitoring period except for disinfection running annual average or locational run TT= Treatment Technique **Nitrate in drinking water at levels above six months of age. High nitrate levels in Nitrate levels may rise quickly for short p activity. If you are caring for an infant, you provider.	f less than syndrome. agricultural	from the South Dade Wat (d) A total of 32 samples for Aventura distribution syst average. This is the value (e) A total of 16 samples for system in order to demon value which precedes the (f) Compliance is based on a (g) 90th percentile value repu- above the AL), the syste (h) Data presented for the M parameters in accordance (i) Fluoride testing to demons	Maximum Cor amples should es for total col er Supply dist Total Trihalon em) in order t e which prece- Total Trihalon strate complia parentheses. running annu- orted. If the 9 m is in compli ain System, S e with regulat strate complia	d only be reported if there is liform bacteria testing are co tribution system) in order to nethane and Haloacetic Acic o demonstrate compliance v des the parentheses. nethane and Haloacetic Acic ance with State regulations. Jul average, computed quart 00th percentile value does no ance and is utilizing the pres couth Dade System and Nort	to meet copper a 2020, 8 o	We constantly monitor for various contaminants in the water supply to meet all regulatoy requirements. This includes monitoring for copper at customers' taps. In May-June and October-November 2020, 8 out of 87 homes had copper levels that exceeded the action level (AL) of 1.3 ppm. In both sampling events, the AL for copper was not exceeded at he 90th percentile.							

2019 ADDITIONAL CONTAMINANTS MONITORING ¹													
PARAMETER	FEDERAL MCL (a)	. FEDERAL GOAL (b)		YEAR TESTED	MAIN SYSTEM	MCL VIOL Y/N	SOUTH DADE WATER SUPPLY SYSTEM	MCL VIOL Y/N	NMB WATER	MCL VIOL Y/N	REDAVO	MCL VIOL Y/N	MAJOR SOURCES
Perfluorooctane sulfonate (ppt)	N/A	N/A	N/A	20 (h)	31 (14-31)		36 (18-36)		N/A		17 (17)		Disharge/runoff from manmade products
Perfluorooctanoic acid (ppt)	N/A	N/A	N/A	20 (h)	11 (5-11)		8 (1-8)		N/A		1 (1)		Disharge/runoff from manmade products

This separate table conatins contaminants which MDWASD tested voluntarily and which are not currently regulated.
ND = Not Detected
NE = None Established
ppt= parts per trillion